MATH 245 S17, Exam 1 Solutions

1. Carefully define the following terms: composite, conjunction, tautology, Double Negation semantic theorem

Let $n \in \mathbb{Z}$ with $n \ge 2$. We call *n* composite if there is some $a \in \mathbb{Z}$ such that 1 < a < n and a|n. Let p, q be propositions. Their conjunction is the proposition that is true if p, q are both true, and false otherwise. A tautology is a (compound) proposition that is always true. The Double Negation semantic theorem states that for every proposition p, we have $\neg(\neg p) \equiv p$.

2. Carefully define the following terms: Addition semantic theorem, Trivial Proof theorem, Direct Proof, converse.

The Addition semantic theorem states that for any propositions p, q, we have $p \vdash p \lor q$. The Trivial Proof theorem states that for any propositions p, q, we have $q \vdash p \to q$. The Direct Proof theorem states that for any propositions p, q, if $p \vdash q$ is valid, then $p \to q$ is true. The converse of conditional proposition $p \to q$ is $q \to p$.

3. Calculate and simplify $\frac{(\lfloor 13.9 \rfloor + \lfloor -1.2 \rfloor)!}{[8.4]!}$.

We have $\frac{(\lfloor 13.9 \rfloor + \lfloor -1.2 \rfloor)!}{\lceil 8.4 \rceil!} = \frac{(13-2)!}{9!} = \frac{11!}{9!} = \frac{11\cdot 10\cdot 9!}{9!} = 11\cdot 10 = 110.$

4. Let $a, b, c \in \mathbb{Z}$. Suppose that a|b and a|c. Prove that a|(b+c).

Because a|b there is some $m \in \mathbb{Z}$ with b = ma. Because a|c there is some $n \in \mathbb{Z}$ with c = na. Adding, we get b + c = ma + na = (m + n)a. Now a|(b + c) because $m + n \in \mathbb{Z}$.

5. Use truth tables to prove the half of De Morgan's Law which states that for any propositions p, q we have $\neg(p \lor q) \equiv (\neg p) \land (\neg q)$.

p	q	$p \vee q$	$\neg (p \lor q)$	$\neg p$	$\neg q$	$(\neg p) \land (\neg q)$
Т	Т	Т	F	F	F	F
Т	\mathbf{F}	Т	F	\mathbf{F}	Т	F
\mathbf{F}	Т	Т	\mathbf{F}	Т	\mathbf{F}	F
\mathbf{F}	\mathbf{F}	\mathbf{F}	Т	Т	Т	Т

The fourth and seventh columns, as highlighted, agree. Hence $\neg(p \lor q) \equiv (\neg p) \land (\neg q)$.

6. Simplify $\neg((p \to q) \land r)$ as much as possible. (i.e. where only basic propositions are negated)

We start with $\neg((p \to q) \land r)$. Applying conditional interpretation, this is equivalent to $\neg((q \lor \neg p) \land r)$. Applying De Morgan's Law, this is equivalent to $(\neg(q \lor \neg p)) \lor (\neg r)$. Applying De Morgan's Law again, this is equivalent to $((\neg q) \land \neg(\neg p)) \lor (\neg r)$. Finally, applying double negation, this is equivalent to $((\neg q) \land p) \lor (\neg r)$.

7. Let $x \in \mathbb{R}$. Prove that if x is irrational then $\frac{x}{3}$ is irrational.

We use a contrapositive proof. Assume that $\frac{x}{3}$ is rational. Then there are integers m, n, with $n \neq 0$, such that $\frac{x}{3} = \frac{m}{n}$. Multiplying both sides by 3 we get $x = \frac{3m}{n}$. Now, 3m, n are integers with $n \neq 0$, so x is rational.

8. Let $n \in \mathbb{Z}$. Suppose that n is even. Prove that $3n^2 + 1$ is odd.

We use a direct proof. Suppose that n is even. Then there is an integer m with n = 2m. Now, $3n^2 + 1 = 3(2m)^2 + 1 = 3(4m^2) + 1 = 2(6m^2) + 1$. Because $6m^2$ is an integer, $3n^2 + 1$ is odd.

9. Using semantic theorems, prove that for any propositions p, q, r, we have $((p \lor q) \lor r), (\neg q) \vdash p \lor r$.

Start with hypothesis $(p \lor q) \lor r$. Applying commutativity of \lor , we get $(q \lor p) \lor r$. Applying associativity of \lor , we get $q \lor (p \lor r)$. Now apply disjunctive syllogism to this and to hypothesis $\neg q$ to get $p \lor r$.

10. Using semantic theorems, prove that for any propositions p, q, r, we have $(p \to q), (q \to r) \vdash (p \to r)$.

If q is true, then applying modus ponens to hypothesis $q \to r$ gives r. Applying addition gives $r \lor \neg p$.

If instead q is false, then applying modus tollens to hypothesis $p \to q$ gives $\neg p$. Applying addition gives $r \lor \neg p$. Either way we have $r \lor \neg p$. Applying conditional interpretation we get $p \to r$.